3.196 \(\int \frac {\sqrt {d+e x^2}}{d^2-e^2 x^4} \, dx\)

Optimal. Leaf size=38 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {2} d \sqrt {e}} \]

[Out]

1/2*arctanh(x*2^(1/2)*e^(1/2)/(e*x^2+d)^(1/2))/d*2^(1/2)/e^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1150, 377, 208} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {2} d \sqrt {e}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x^2]/(d^2 - e^2*x^4),x]

[Out]

ArcTanh[(Sqrt[2]*Sqrt[e]*x)/Sqrt[d + e*x^2]]/(Sqrt[2]*d*Sqrt[e])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1150

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[(d + e*x^2)^(p + q)*(a/d + (c*x^
2)/e)^p, x] /; FreeQ[{a, c, d, e, q}, x] && EqQ[c*d^2 + a*e^2, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x^2}}{d^2-e^2 x^4} \, dx &=\int \frac {1}{\left (d-e x^2\right ) \sqrt {d+e x^2}} \, dx\\ &=\operatorname {Subst}\left (\int \frac {1}{d-2 d e x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {2} d \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 38, normalized size = 1.00 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {2} d \sqrt {e}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x^2]/(d^2 - e^2*x^4),x]

[Out]

ArcTanh[(Sqrt[2]*Sqrt[e]*x)/Sqrt[d + e*x^2]]/(Sqrt[2]*d*Sqrt[e])

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 138, normalized size = 3.63 \[ \left [\frac {\sqrt {2} \log \left (\frac {17 \, e^{2} x^{4} + 14 \, d e x^{2} + 4 \, \sqrt {2} {\left (3 \, e x^{3} + d x\right )} \sqrt {e x^{2} + d} \sqrt {e} + d^{2}}{e^{2} x^{4} - 2 \, d e x^{2} + d^{2}}\right )}{8 \, d \sqrt {e}}, -\frac {\sqrt {2} \sqrt {-e} \arctan \left (\frac {\sqrt {2} {\left (3 \, e x^{2} + d\right )} \sqrt {e x^{2} + d} \sqrt {-e}}{4 \, {\left (e^{2} x^{3} + d e x\right )}}\right )}{4 \, d e}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(-e^2*x^4+d^2),x, algorithm="fricas")

[Out]

[1/8*sqrt(2)*log((17*e^2*x^4 + 14*d*e*x^2 + 4*sqrt(2)*(3*e*x^3 + d*x)*sqrt(e*x^2 + d)*sqrt(e) + d^2)/(e^2*x^4
- 2*d*e*x^2 + d^2))/(d*sqrt(e)), -1/4*sqrt(2)*sqrt(-e)*arctan(1/4*sqrt(2)*(3*e*x^2 + d)*sqrt(e*x^2 + d)*sqrt(-
e)/(e^2*x^3 + d*e*x))/(d*e)]

________________________________________________________________________________________

giac [B]  time = 0.53, size = 131, normalized size = 3.45 \[ -\frac {{\left (\sqrt {2} i \arctan \left (\frac {e^{\frac {1}{2}}}{\sqrt {-\frac {d e + \sqrt {d^{2}} e}{d}}}\right ) e^{\frac {1}{2}} - \sqrt {2} i \arctan \left (\frac {e^{\frac {1}{2}}}{\sqrt {-\frac {d e - \sqrt {d^{2}} e}{d}}}\right ) e^{\frac {1}{2}}\right )} e^{\left (-1\right )} \mathrm {sgn}\relax (x)}{4 \, {\left | d \right |}} + \frac {\sqrt {2} i \arctan \left (\frac {\sqrt {\frac {d}{x^{2}} + e}}{\sqrt {-\frac {d e \mathrm {sgn}\relax (x) + \sqrt {d^{2}} e}{d \mathrm {sgn}\relax (x)}}}\right ) e^{\left (-\frac {1}{2}\right )}}{2 \, {\left | d \right |} {\left | \mathrm {sgn}\relax (x) \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(-e^2*x^4+d^2),x, algorithm="giac")

[Out]

-1/4*(sqrt(2)*i*arctan(e^(1/2)/sqrt(-(d*e + sqrt(d^2)*e)/d))*e^(1/2) - sqrt(2)*i*arctan(e^(1/2)/sqrt(-(d*e - s
qrt(d^2)*e)/d))*e^(1/2))*e^(-1)*sgn(x)/abs(d) + 1/2*sqrt(2)*i*arctan(sqrt(d/x^2 + e)/sqrt(-(d*e*sgn(x) + sqrt(
d^2)*e)/(d*sgn(x))))*e^(-1/2)/(abs(d)*abs(sgn(x)))

________________________________________________________________________________________

maple [B]  time = 0.02, size = 986, normalized size = 25.95 \[ -\frac {\sqrt {2}\, \sqrt {d}\, e \ln \left (\frac {4 d +2 \sqrt {2}\, \sqrt {2 d +\left (x -\frac {\sqrt {d e}}{e}\right )^{2} e +2 \sqrt {d e}\, \left (x -\frac {\sqrt {d e}}{e}\right )}\, \sqrt {d}+2 \sqrt {d e}\, \left (x -\frac {\sqrt {d e}}{e}\right )}{x -\frac {\sqrt {d e}}{e}}\right )}{2 \sqrt {d e}\, \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}+\frac {\sqrt {2}\, \sqrt {d}\, e \ln \left (\frac {4 d +2 \sqrt {2}\, \sqrt {2 d +\left (x +\frac {\sqrt {d e}}{e}\right )^{2} e -2 \sqrt {d e}\, \left (x +\frac {\sqrt {d e}}{e}\right )}\, \sqrt {d}-2 \sqrt {d e}\, \left (x +\frac {\sqrt {d e}}{e}\right )}{x +\frac {\sqrt {d e}}{e}}\right )}{2 \sqrt {d e}\, \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}-\frac {\sqrt {e}\, \ln \left (\frac {\left (x -\frac {\sqrt {-d e}}{e}\right ) e +\sqrt {-d e}}{\sqrt {e}}+\sqrt {\left (x -\frac {\sqrt {-d e}}{e}\right )^{2} e +2 \sqrt {-d e}\, \left (x -\frac {\sqrt {-d e}}{e}\right )}\right )}{2 \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}-\frac {\sqrt {e}\, \ln \left (\frac {\left (x +\frac {\sqrt {-d e}}{e}\right ) e -\sqrt {-d e}}{\sqrt {e}}+\sqrt {\left (x +\frac {\sqrt {-d e}}{e}\right )^{2} e -2 \sqrt {-d e}\, \left (x +\frac {\sqrt {-d e}}{e}\right )}\right )}{2 \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}+\frac {\sqrt {e}\, \ln \left (\frac {\left (x -\frac {\sqrt {d e}}{e}\right ) e +\sqrt {d e}}{\sqrt {e}}+\sqrt {2 d +\left (x -\frac {\sqrt {d e}}{e}\right )^{2} e +2 \sqrt {d e}\, \left (x -\frac {\sqrt {d e}}{e}\right )}\right )}{2 \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}+\frac {\sqrt {e}\, \ln \left (\frac {\left (x +\frac {\sqrt {d e}}{e}\right ) e -\sqrt {d e}}{\sqrt {e}}+\sqrt {2 d +\left (x +\frac {\sqrt {d e}}{e}\right )^{2} e -2 \sqrt {d e}\, \left (x +\frac {\sqrt {d e}}{e}\right )}\right )}{2 \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}-\frac {\sqrt {\left (x -\frac {\sqrt {-d e}}{e}\right )^{2} e +2 \sqrt {-d e}\, \left (x -\frac {\sqrt {-d e}}{e}\right )}\, e}{2 \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right ) \sqrt {-d e}}+\frac {\sqrt {2 d +\left (x -\frac {\sqrt {d e}}{e}\right )^{2} e +2 \sqrt {d e}\, \left (x -\frac {\sqrt {d e}}{e}\right )}\, e}{2 \sqrt {d e}\, \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )}+\frac {\sqrt {\left (x +\frac {\sqrt {-d e}}{e}\right )^{2} e -2 \sqrt {-d e}\, \left (x +\frac {\sqrt {-d e}}{e}\right )}\, e}{2 \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right ) \sqrt {-d e}}-\frac {\sqrt {2 d +\left (x +\frac {\sqrt {d e}}{e}\right )^{2} e -2 \sqrt {d e}\, \left (x +\frac {\sqrt {d e}}{e}\right )}\, e}{2 \sqrt {d e}\, \left (\sqrt {-d e}+\sqrt {d e}\right ) \left (\sqrt {-d e}-\sqrt {d e}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)/(-e^2*x^4+d^2),x)

[Out]

-1/2*e/((-d*e)^(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))/(-d*e)^(1/2)*((x-(-d*e)^(1/2)/e)^2*e+2*(-d*e)^(1/
2)*(x-(-d*e)^(1/2)/e))^(1/2)-1/2*e^(1/2)/((-d*e)^(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*ln(((x-(-d*e)^(
1/2)/e)*e+(-d*e)^(1/2))/e^(1/2)+((x-(-d*e)^(1/2)/e)^2*e+2*(-d*e)^(1/2)*(x-(-d*e)^(1/2)/e))^(1/2))+1/2*e/(d*e)^
(1/2)/((-d*e)^(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*(2*d+(x-(d*e)^(1/2)/e)^2*e+2*(d*e)^(1/2)*(x-(d*e)^
(1/2)/e))^(1/2)+1/2*e^(1/2)/((-d*e)^(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*ln(((x-(d*e)^(1/2)/e)*e+(d*e
)^(1/2))/e^(1/2)+(2*d+(x-(d*e)^(1/2)/e)^2*e+2*(d*e)^(1/2)*(x-(d*e)^(1/2)/e))^(1/2))-1/2*e/(d*e)^(1/2)/((-d*e)^
(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*d^(1/2)*2^(1/2)*ln((4*d+2*2^(1/2)*(2*d+(x-(d*e)^(1/2)/e)^2*e+2*(
d*e)^(1/2)*(x-(d*e)^(1/2)/e))^(1/2)*d^(1/2)+2*(d*e)^(1/2)*(x-(d*e)^(1/2)/e))/(x-(d*e)^(1/2)/e))+1/2*e/((-d*e)^
(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))/(-d*e)^(1/2)*((x+(-d*e)^(1/2)/e)^2*e-2*(-d*e)^(1/2)*(x+(-d*e)^(1
/2)/e))^(1/2)-1/2*e^(1/2)/((-d*e)^(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*ln(((x+(-d*e)^(1/2)/e)*e-(-d*e
)^(1/2))/e^(1/2)+((x+(-d*e)^(1/2)/e)^2*e-2*(-d*e)^(1/2)*(x+(-d*e)^(1/2)/e))^(1/2))-1/2*e/(d*e)^(1/2)/((-d*e)^(
1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*(2*d+(x+(d*e)^(1/2)/e)^2*e-2*(d*e)^(1/2)*(x+(d*e)^(1/2)/e))^(1/2)
+1/2*e^(1/2)/((-d*e)^(1/2)+(d*e)^(1/2))/((-d*e)^(1/2)-(d*e)^(1/2))*ln(((x+(d*e)^(1/2)/e)*e-(d*e)^(1/2))/e^(1/2
)+(2*d+(x+(d*e)^(1/2)/e)^2*e-2*(d*e)^(1/2)*(x+(d*e)^(1/2)/e))^(1/2))+1/2*e/(d*e)^(1/2)/((-d*e)^(1/2)+(d*e)^(1/
2))/((-d*e)^(1/2)-(d*e)^(1/2))*d^(1/2)*2^(1/2)*ln((4*d+2*2^(1/2)*(2*d+(x+(d*e)^(1/2)/e)^2*e-2*(d*e)^(1/2)*(x+(
d*e)^(1/2)/e))^(1/2)*d^(1/2)-2*(d*e)^(1/2)*(x+(d*e)^(1/2)/e))/(x+(d*e)^(1/2)/e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {\sqrt {e x^{2} + d}}{e^{2} x^{4} - d^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(-e^2*x^4+d^2),x, algorithm="maxima")

[Out]

-integrate(sqrt(e*x^2 + d)/(e^2*x^4 - d^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {\sqrt {e\,x^2+d}}{d^2-e^2\,x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^(1/2)/(d^2 - e^2*x^4),x)

[Out]

int((d + e*x^2)^(1/2)/(d^2 - e^2*x^4), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {1}{- d \sqrt {d + e x^{2}} + e x^{2} \sqrt {d + e x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)/(-e**2*x**4+d**2),x)

[Out]

-Integral(1/(-d*sqrt(d + e*x**2) + e*x**2*sqrt(d + e*x**2)), x)

________________________________________________________________________________________